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Purpose: To simulate cerebral temperature behaviour with hypothermia treatment applying different
cooling devices and to find the optimal brain temperature monitoring.
Methods: Models based on hourly temperature values recorded in patients with severe aneurysmal sub-
arachnoid hemorrhage, taking MRI data, thermal conductive properties, metabolism and blood flow into
account were applied to different scenarios of hypothermia.
Results: Systemic hypothermia by endovascular cooling leads to an uniform temperature decrease within

◦
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the brain tissue. Cooling with head caps lead to 33 C only in the superficial brain while the deep brain
remains higher than 36 ◦C. Cooling with neckbands lead to 35.8 ◦C for dry and 32.8 ◦C for wet skin in the
deep brain.
Conclusions: With head caps temperatures below 36 ◦C cannot be reached in the deep brain tissue, whereas
neckbands, covering the carotid triangles, may lead to hypothermic temperatures in the deep brain
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. Introduction

Mild hypothermia, showing numerous neuroprotective effects,
ay be effective to limit the extent of secondary brain damage

Bernard et al., 2002; Bigelow et al., 1949; Busto et al., 1989; Maher
nd Hachinski, 1993; Schwab et al., 1998; Thomé et al., 2005). Pro-
onged systemic hypothermia (SH), however, is associated with
evere side effects, thus possibly negate potential benefits (Gasser
t al., 2003; Polderman, 2004a,b; Qiu et al., 2006). Noninvasive
elective brain cooling may offer the opportunity to achieve the
esired effects with minimal side effects.

The aim of the present study was to develop a model to simulate
erebral temperature behaviour during induction of therapeutic
ypothermia, to assess the feasibility of local cerebral hypother-
ia (LH) by using different cooling devices and to find the optimal

eference point for brain temperature monitoring.

. Methods
U
N

C

Please cite this article in press as: Keller E, et al. Theoretical evaluations
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.1. Mathematical model

An extended version of the bio-heat equation model by Pennes
as used to describe the thermophysiological dynamics during

∗ Corresponding author. Tel.: +41 44 255 56 71; fax: +41 44 255 46 72.
E-mail address: Emanuela.keller@usz.ch (E. Keller).
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ave to be applied at least 2 cm below the cortical surface to give values
issue.

© 2009 Published by Elsevier B.V.

hypothermia (Pennes, 1948).

ıts · � · C · dT

dt
+ ∇ · (−k · ∇T) = �b · Cb · ωb(T) · (Tb(t) − T) + Qmet(T)

(1)

where ıts is a time-scaling coefficient, � the tissue density, C the
tissue specific heat coefficient, k the tissue specific thermal con-
ductivity tensor, �b the density of blood, Cb the blood specific
heat coefficient, ωb(T) the blood perfusion rate and Tb(t) the arte-
rial blood temperature and Qmet(T) the heat source of the natural
metabolism. A homogenous temperature distribution within the
carotid arteries was assumed.

The equation has been modified in order to take changes in brain
temperature into account (Konstas et al., 2007). The modification
of the cerebral blood flow (CBF) can be formulated with a baseline
perfusion of ω0, as:

ωb(T) = ω0 · 2.961((T−37)·0.08401) (2)

The temperature-dependence of the metabolism is described to
be

Qmet(T) = Q0 · 2.961((T−37)·0.08401) (3)
of therapeutic systemic and local cerebral hypothermia. J Neurosci

In order to implement the mathematical equation representing 57

the thermal behaviour of the different tissues finite element based 58

physical models for the head and neck, connected via the blood flow 59

are developed. The mathematical model was implemented using 60
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part of the neck, as shown in Fig. 4. In all three scenarios (Fig. 4a–c) 152

a temperature drop appears from 37 ◦C to ≤35.5 ◦C in the carotid 153
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ig. 1. Coronar section of the head model, including the different tissue types scalp,
kull, cerebrospinal fluid (CSF), brain, bone and muscle.

he commercial software package COMSOL based on the Finite Ele-
ent (FE) method. The specific heat constants are taken from the

iterature for blood (Dexter and Hinderman, 1994), scalp, skull,
uscle and brain (Xu et al., 1999), cartilage (Karam et al., 2006),

s well as constants for the mass density and thermal conductiv-
ty for blood, scalp, skull, muscle and brain (Olsen et al., 1985) and
artilage (Karam et al., 2006). The values for the cerebrospinal fluid
re supposed to be equal to those from water.

In order to implement the mathematical equation representing
he thermal behaviour of the different tissues finite element based
hysical models for the head and neck, connected via the blood flow
re developed.

.2. Physical models

.2.1. Physical model of the head
The three-dimensional head structure is approximated as a

pherical model (Fig. 1) Diao et al., 2003; Zhu and Diao, 2001). The
rain tissue is surrounded by a layer of cerebrospinal fluid (CSF).
he lower half of the sphere represents the facial structures and
s modelled as muscle tissue. The two halves are separated by a
one plat, representing the skull base. Two outer layers, a skull-
nd a scalp-layer, surround the complete sphere. Based on anatom-
cal data the outer radius of the brain tissue layer is set to have a
adius of rBrain = 80 mm resulting in a brain volume of 1080 ml. The
SF layer in the upper half of the sphere is set with rCSF = 85 mm.
he thickness of the skull is chosen to be 5 mm, implying that the
utside radius of the skull layer is rSkull = 90 mm. The thickness of
he scalp-layer is also chosen to be 5 mm resulting in an outer radius
f the head model of 95 mm.

.2.2. Physical model of the neck
The neck model is based on a axial T1 weighted fast field echo

RI scan of a healthy volunteer (3T, Phillips Achieva). The cross
ection is placed at the level of the carotid bifurcation. The seg-
entation within the cross section allowed for the differentiation

f bone, skin, muscle and throat within the neck. The diameters of
he skin, spine, trachea and larynx have been measured and imple-
Please cite this article in press as: Keller E, et al. Theoretical evaluations
Methods (2009), doi:10.1016/j.jneumeth.2008.12.030

ented in the neck model. The position of arteries and veins within
he cross section were determined. The mapped cross section of the
eck was extruded to a 10 cm long three-dimensional structure.
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2.3. Evaluated scenarios

The models described are applied for different scenarios to ana-
lyze different cooling methods, defined by setting the boundary
conditions between the cooling device and the skin layer to be 6 ◦C.

2.3.1. Systemic hypothermia
For the scenario of SH, cooling via the decreased systemic

blood temperature is simulated. The model is based on hourly
temperature values recorded in nine patients with severe aneurys-
mal subarachnoid hemorrhage, treated with SH due to elevated
intracranial pressure (ICP) and/or symptomatic cerebral vasospasm
refractory to conventional treatment (Gasser et al., 2003). SH was
induced and maintained with an intravascular catheter-based heat
exchange system (Alsius, Irvine, CA) and hourly temperature values
were collected for the brain with temperature sensors integrated
in ventricular drainages (Raumedic, Munich, Germany) and for the
body core with sensors in the femoral artery (Picco System, Pulsion
Medical System, Munich, Germany).

2.3.2. Local cerebral hypothermia with a cooling cap applied over
the skull

For the scenario of LH, cooling via a boundary condition of 6 ◦C,
set at the upper half of the sphere, representing the skullcap is sim-
ulated. The heat transfer from the scalp to the head cap device is
described by the heat flux condition:

−�n(−k∇T) = h(Tinf − T)

The heat transfer coefficient was estimated for dry skin to be
hdry = 8.37 W/(m2K) and for wet skin hwet = 29.3 W/(m2 K) (De Dear
et al., 1997).

2.3.3. Local cerebral hypothermia with a neckband
An alternative approach for LH is analyzed to lower the temper-

ature within the arterial blood supply in the carotid arteries leading
to the head. A neckband is simulated to be placed around the neck.
The head and neck model are linked via the heat exchange of the
blood flow between neck and head.

The external cooling of the neck causes a temperature decay
within the neck tissue, which is used to model the temperature of
the blood supply to the brain. The heat flux of the arterial blood
coming from the cooled neck is transposed into a blood perfusion
rate for the brain tissue. The metabolic rate of the brain tissue is set
in dependence of the blood temperature as earlier described in the
first test scenario within Eq. (2).

3. Results

SH by endovascular cooling leads to an almost uniform temper-
ature decrease within the brain tissue over time (Fig. 2). On the
other hand, cooling with head caps applied over the scalp leads to
a temperature of 33 ◦C only in the superficial brain layers (Fig. 3).
After 6 h the scalp reaches a temperature of 15 ◦C, the brain surface
33 ◦C, while the deep brain tissue still remains on a temperature
higher than 36 ◦C.

Cooling with a neckband leads to a temperature decay limited to
the outside layers of the neck (Fig. 4). Only the blood supply, how-
ever, leading to the brain within the carotid arteries is relevant for
LH of the brain. The relevant region, the region of the carotid trian-
gle, can be cooled with cooling elements covering only the frontal
of therapeutic systemic and local cerebral hypothermia. J Neurosci

arteries within 3 h of cooling. The cooling of the muscles in the dor- 154

sal regions of the neck has no influence. In Fig. 5 the differences in 155

the temperature decrease due to the different heat transfer coeffi- 156
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Fig. 2. Coronar section of the head model giving the temperature values in the different tissues and the brain. The temperature decay within the layered head model is shown
for systemic hypothermia (SH) for (a) 10 min; (b) 1 h; and (c) 6 h of cooling. SH by endovascular cooling leads to an almost uniform temperature decrease within brain tissue.
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ig. 3. Coronar section of the head model giving the temperature values in the differ
or local cooling with a head cap for (a) 10 min; (b) 1 h; and (c) 6 h of cooling. Afte
hile the deep brain tissue remains unaffected.

ients for dry and wet skin are shown for cooling after 6 h within the
xial section of the neck. Already after 3 h the temperature of the
issue surrounding the carotid arteries have reached a temperature
f 32 ◦C. Cooling using the neckband leads to brain temperatures of
5.8 ◦C for dry skin and 32.8 ◦C for wet skin (Fig. 6).

The brain temperature decay was calculated over time for cool-
ng with the head cap with reference points chosen in 5 mm steps
U
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tarting at the skin surface and leading into the brain tissue. In a
epth of 2 cm below the brain surface no temperature change can be
bserved. A temperature sensor has to be placed at least 2 cm below
he brain surface to monitor the temperature values representative
or deep brain tissue.

ig. 4. 3D views of the neck model giving the temperature values for (a) cooling for 6 h wi
arts of the neckband at the anterior part of the neck; and (c) cooling for 6 h with the coo
sues and the brain. The temperature decay within the layered head model is shown
he skin layer has reached a temperature below 20 ◦C (white colour in the figures),

4. Discussion

Our theoretical studies indicate that cooling with head cap over
the scalp alone leads to a temperature of 33 ◦C only in the super-
ficial brain layers, while the deep brain tissue still remains on a
temperature higher than of 36 ◦C. These results are in agreement
with simulations performed by Nelson and Nunneley, as well as
of therapeutic systemic and local cerebral hypothermia. J Neurosci

by Zhu and Diao (Nelson and Nunneley, 1998; Zhu and Diao, 2001). 175

Recent theoretical approaches suggest that a decrease in the human 176

brain temperature can be accomplished only due to a tempera- 177

ture decrease in the incoming arterial blood flow (Sukstanskii and 178

Yablonskiy, 2007). A temperature shielding effect of the CBF has 179

th a cold neckband surrounding the whole neck; (b) cooling for 6 h with the cooling
ling parts of the neckband at the carotid triangles of the neck.
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ig. 5. The axial section of the neck model with temperature values is shown for coo
oefficient for dry skin and (b) with a heat transfer coefficient for wet skin. (1) Inter

een described (Sukstanskii and Yablonskiy, 2007; Zhu and Diao,
001; Zhu et al., 2006). CBF counteracts extracranial cooling and
revents the deep brain tissue from temperature decrease (Diao et
l., 2003; Sukstanskii and Yablonskiy, 2007; Zhu et al., 2006). Suk-
tanskii et al. suggested that only under the condition of very low
BF (6 ml/100 g/min) and an ideal heat transfer coefficient describ-

ng the heat exchange between the head surface and a cooling
elmet would allow a temperature decrease within deep brain tis-
ue (Sukstanskii and Yablonskiy, 2007). Wang et al. supported these
heoretical considerations with a case report (Wang et al., 2006). A
atient with left carotid internal artery occlusion was treated with
H. The authors found, with bilateral intraparenchymatous ICP-
nd temperature-monitoring, significant interhemispheric ICP- and
emperature-gradients with preferential cooling of the infarcted,
ow-perfused hemisphere. Wang et al., applying a specifically devel-
ped cooling device for external head cooling and a temperature
onitoring probe 0.8 cm below the cortical surface, showed in
first study group of 8 patients, that after a mean of 3.4 h, a

rain temperature lower than 34 ◦C could be reached (Wang et
l., 2004). In another patient series, ICP-lowering effects in 45
atients with severe traumatic brain injury could be achieved
ith a similar cooling device for external head cooling (Qiu et al.,

006). With a temperature monitoring probe introduced 10 mm
elow the brain surface or into the space where the intracere-
ral haematoma had been evacuated, the authors documented
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brain temperature decrease to 33–35 ◦C within 2 h (Qiu et al.,
006). However, in both studies performed by Wang et al. and
y Qiu et al., not only a head cap, but a neckband was integrated
nd applied simultaneously (Qiu et al., 2006; Wang et al., 2004;
ang et al., 2006). Based on our results, only the neckband, effec-

ig. 6. The coronar section of the head model giving the temperature values in the differ
hown for local hypothermia with a neckband and wet skin after (a) 10 min; (b) 1 h; and (
D
 P

R
O

O
For 6 h with the neckband at the carotid triangles of the neck (a) with a heat transfer

gular vein; (2) internal carotid artery.

tive in cooling the blood inflow within the carotid arteries may
have contributed to the desired effect of LH in these studies. With
future developments in cooling devices for LH it should be taken
into account that only the neckband may be effective to accom-
plish LH in the deep brain tissue. The further development of head
caps, not only being useless, but potentially harmful concerning
wound healing especially in neurosurgical patients should be aban-
doned.

Animal and clinical trials showed that even small changes in
brain temperature can determine the survival of cerebral tissues
during ischemia (Azzimondi et al., 1995; Busto et al., 1989). Fever
has been shown to be harmful in patients with brain damage
and interests increase for a valuable brain temperature monitoring
in neurointensive care patients (Azzimondi et al., 1995; Diringer,
2004; Oliveira-Filho et al., 2001). In clinical studies applying LH,
temperature monitoring is not standardized (Hachimi-Idrissi et al.,
2001; Liu et al., 2006). Under pathological conditions, the tem-
perature of the brain tissue are insufficiently represented by the
trunk core or the tympanic temperature (Mariak, 2002; Mellergard
and Nordström, 1990). Our results suggest, that the ideal reference
point for temperature monitoring to control the success of LH is
at least 2 cm below the cortical surface. Based on our simulations,
surface cooling by a head cap induces a temperature gradient in
the brain tissue of 3 ◦C for the first 1 cm. Zhu and Diao, in their
model simulations found, depending on the head surface temper-
of therapeutic systemic and local cerebral hypothermia. J Neurosci

ature, a temperature gradient of up to 13 ◦C in the brain tissue 235

(Zhu and Diao, 2001). This implies that the results of Wang et al. 236

with a temperature sensor applied to a probe at 0.8 cm below the 237

cortical surface are not representative for the deep brain tissue 238

(Wang et al., 2004; Wang et al., 2006). Their approach for temper- 239

ent tissues and the brain. The temperature decay within the layered head model is
c) 6 h.
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ture monitoring is based on theoretical examinations from Zhu
nd Diao, suggesting that the volumetric-averaged brain tempera-
ure should be measured at 7.5 mm below the cortical surface (Zhu
nd Diao, 2001). The debatable question remains, which brain tem-
erature values are representative to control the effects of LH: the
olumetric-averaged brain temperature taken from Zhu and Wang
r the temperature coming centripetal from the cortical surface
o the deeper brain, where no change can be observed anymore
nd reflecting the temperature in the deep brain. The hypothe-
is from Zhu and Diao, that the volumetric-averaged brain tissue
emperature may be associated with patient outcomes lacks some
athophysiological considerations. Especially applying therapeutic
ypothermia after cardiac arrest, leading to global changes and mit-

gating neurologic injury in the whole brain (Bernard et al., 2002;
afar and Kochanek, 2002), suggests, that the temperatures should
e monitored and hypothermic values aimed not only in the distal,
ut in all regions of the brain. Histological damages with death of
eurons were documented mainly in the most vulnerable regions
f the brain, such as the hippocampus and the cerebellum (Safar,
997).

Transferring the results from our model simulations into clinical
ractice, several limitations have to be discussed. Spontaneous tem-
erature variations within the brain occur under physiological and
athological conditions (Baker, 1982; Mellergard and Nordström,
990). Local CBF, cerebral metabolism and the temperature of the
erfusing arterial blood, supposed to be constant in our model, may
e altered globally in the whole brain, e.g. with fever or hypother-
ia, or focally, e.g. with ischemic stroke (Keller et al., 2000). The

erebral metabolic rate, most of all, may be variable. With treat-
ent of fever, counterregulation may occur, which partially could

e blocked medically. Furthermore, effective cooling of the head
nd brain may lead to a secondary cooling of the entire body. These
onditions may change during the illness course and treatment
Hegner et al., 2001). These phenomenon lead to still more complex
onditions for brain temperature monitoring and model simula-
ions. In future, theoretical examinations have to be individualized
ot only focusing the influence of different cooling devices, but
dapted specifically to the specific pathophysiological conditions
f the patients.

In conclusions: The model simulations indicate that SH with a
ntravascular catheter-based heat exchange system leads to a uni-
orm temperature decrease within the brain. With cooling head
aps, attached over the scalp, temperatures below 36 ◦C cannot
e reached in the deep brain tissue, whereas a neckband, cover-

ng the carotid triangles, via a temperature decrease in the blood
ow to the brain may lead to hypothermic temperatures in the
eep brain tissue. Cooling via a neckband (boundary conditions of
et skin, 6 ◦C) leads to a temperature of the deep brain of 32.8 ◦C
ithin 6 h. In future clinical studies, the temperature monitor-

ng should be standardized. Temperature sensors, applied at least
cm below the cortical surface represent values from deep brain

issue.
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